An Ensemble Deep Belief Network Model Based on Random Subspace for NOx Concentration Prediction
نویسندگان
چکیده
منابع مشابه
A Genetic Algorithm-Based Heterogeneous Random Subspace Ensemble Model for Bankruptcy Prediction
Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble techniques are known to be very useful in improving the generalization ability of a classifier. The random subspace ensemble technique is a simple but effective method of constructing ensemble classifiers, in which some features are randomly d...
متن کاملSimple Deep Random Model Ensemble
Representation learning and unsupervised learning are two central topics of machine learning and signal processing. Deep learning is one of the most effective unsupervised representation learning approach. The main contributions of this paper to the topics are as follows. (i) We propose to view the representative deep learning approaches as special cases of the knowledge reuse framework of clus...
متن کاملStatistics and Deep Belief Network-Based Cardiovascular Risk Prediction
OBJECTIVES Cardiovascular predictions are related to patients' quality of life and health. Therefore, a risk prediction model for cardiovascular conditions is needed. METHODS In this paper, we propose a cardiovascular disease prediction model using the sixth Korea National Health and Nutrition Examination Survey (KNHANES-VI) 2013 dataset to analyze cardiovascular-related health data. First, s...
متن کاملmortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولNanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network
Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Omega
سال: 2021
ISSN: 2470-1343,2470-1343
DOI: 10.1021/acsomega.0c06317